Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

P(mark(X)) → P(X)
ACTIVE(zero(X)) → ZERO(active(X))
PROPER(prod(X1, X2)) → PROPER(X2)
S(mark(X)) → S(X)
ACTIVE(p(X)) → ACTIVE(X)
ACTIVE(add(X1, X2)) → ACTIVE(X2)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
TOP(mark(X)) → TOP(proper(X))
PROD(mark(X1), X2) → PROD(X1, X2)
ZERO(mark(X)) → ZERO(X)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
PROD(ok(X1), ok(X2)) → PROD(X1, X2)
ACTIVE(prod(X1, X2)) → ACTIVE(X2)
FACT(mark(X)) → FACT(X)
PROPER(zero(X)) → PROPER(X)
P(ok(X)) → P(X)
ACTIVE(add(X1, X2)) → ADD(active(X1), X2)
ACTIVE(fact(X)) → FACT(p(X))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(prod(s(X), Y)) → ADD(Y, prod(X, Y))
ACTIVE(s(X)) → S(active(X))
ACTIVE(add(X1, X2)) → ADD(X1, active(X2))
PROPER(s(X)) → PROPER(X)
ACTIVE(fact(X)) → PROD(X, fact(p(X)))
ACTIVE(add(s(X), Y)) → ADD(X, Y)
PROPER(prod(X1, X2)) → PROPER(X1)
PROPER(p(X)) → PROPER(X)
PROPER(prod(X1, X2)) → PROD(proper(X1), proper(X2))
TOP(mark(X)) → PROPER(X)
ACTIVE(fact(X)) → FACT(active(X))
ADD(mark(X1), X2) → ADD(X1, X2)
ACTIVE(fact(X)) → P(X)
PROD(X1, mark(X2)) → PROD(X1, X2)
ACTIVE(add(X1, X2)) → ACTIVE(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
PROPER(add(X1, X2)) → PROPER(X1)
PROPER(add(X1, X2)) → ADD(proper(X1), proper(X2))
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(fact(X)) → PROPER(X)
PROPER(p(X)) → P(proper(X))
ACTIVE(prod(X1, X2)) → PROD(active(X1), X2)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
FACT(ok(X)) → FACT(X)
PROPER(fact(X)) → FACT(proper(X))
S(ok(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(prod(s(X), Y)) → PROD(X, Y)
PROPER(if(X1, X2, X3)) → PROPER(X2)
ADD(ok(X1), ok(X2)) → ADD(X1, X2)
ACTIVE(prod(X1, X2)) → ACTIVE(X1)
ACTIVE(fact(X)) → S(0)
ACTIVE(zero(X)) → ACTIVE(X)
ACTIVE(fact(X)) → IF(zero(X), s(0), prod(X, fact(p(X))))
PROPER(add(X1, X2)) → PROPER(X2)
ACTIVE(p(X)) → P(active(X))
ADD(X1, mark(X2)) → ADD(X1, X2)
PROPER(zero(X)) → ZERO(proper(X))
TOP(ok(X)) → TOP(active(X))
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(prod(X1, X2)) → PROD(X1, active(X2))
ACTIVE(fact(X)) → ZERO(X)
ZERO(ok(X)) → ZERO(X)
ACTIVE(add(s(X), Y)) → S(add(X, Y))

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

P(mark(X)) → P(X)
ACTIVE(zero(X)) → ZERO(active(X))
PROPER(prod(X1, X2)) → PROPER(X2)
S(mark(X)) → S(X)
ACTIVE(p(X)) → ACTIVE(X)
ACTIVE(add(X1, X2)) → ACTIVE(X2)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
TOP(mark(X)) → TOP(proper(X))
PROD(mark(X1), X2) → PROD(X1, X2)
ZERO(mark(X)) → ZERO(X)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
PROD(ok(X1), ok(X2)) → PROD(X1, X2)
ACTIVE(prod(X1, X2)) → ACTIVE(X2)
FACT(mark(X)) → FACT(X)
PROPER(zero(X)) → PROPER(X)
P(ok(X)) → P(X)
ACTIVE(add(X1, X2)) → ADD(active(X1), X2)
ACTIVE(fact(X)) → FACT(p(X))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(prod(s(X), Y)) → ADD(Y, prod(X, Y))
ACTIVE(s(X)) → S(active(X))
ACTIVE(add(X1, X2)) → ADD(X1, active(X2))
PROPER(s(X)) → PROPER(X)
ACTIVE(fact(X)) → PROD(X, fact(p(X)))
ACTIVE(add(s(X), Y)) → ADD(X, Y)
PROPER(prod(X1, X2)) → PROPER(X1)
PROPER(p(X)) → PROPER(X)
PROPER(prod(X1, X2)) → PROD(proper(X1), proper(X2))
TOP(mark(X)) → PROPER(X)
ACTIVE(fact(X)) → FACT(active(X))
ADD(mark(X1), X2) → ADD(X1, X2)
ACTIVE(fact(X)) → P(X)
PROD(X1, mark(X2)) → PROD(X1, X2)
ACTIVE(add(X1, X2)) → ACTIVE(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
PROPER(add(X1, X2)) → PROPER(X1)
PROPER(add(X1, X2)) → ADD(proper(X1), proper(X2))
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(fact(X)) → PROPER(X)
PROPER(p(X)) → P(proper(X))
ACTIVE(prod(X1, X2)) → PROD(active(X1), X2)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
FACT(ok(X)) → FACT(X)
PROPER(fact(X)) → FACT(proper(X))
S(ok(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(prod(s(X), Y)) → PROD(X, Y)
PROPER(if(X1, X2, X3)) → PROPER(X2)
ADD(ok(X1), ok(X2)) → ADD(X1, X2)
ACTIVE(prod(X1, X2)) → ACTIVE(X1)
ACTIVE(fact(X)) → S(0)
ACTIVE(zero(X)) → ACTIVE(X)
ACTIVE(fact(X)) → IF(zero(X), s(0), prod(X, fact(p(X))))
PROPER(add(X1, X2)) → PROPER(X2)
ACTIVE(p(X)) → P(active(X))
ADD(X1, mark(X2)) → ADD(X1, X2)
PROPER(zero(X)) → ZERO(proper(X))
TOP(ok(X)) → TOP(active(X))
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(prod(X1, X2)) → PROD(X1, active(X2))
ACTIVE(fact(X)) → ZERO(X)
ZERO(ok(X)) → ZERO(X)
ACTIVE(add(s(X), Y)) → S(add(X, Y))

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

P(mark(X)) → P(X)
ACTIVE(zero(X)) → ZERO(active(X))
S(mark(X)) → S(X)
PROPER(prod(X1, X2)) → PROPER(X2)
ACTIVE(add(X1, X2)) → ACTIVE(X2)
ACTIVE(p(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
PROD(mark(X1), X2) → PROD(X1, X2)
TOP(mark(X)) → TOP(proper(X))
ZERO(mark(X)) → ZERO(X)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
PROD(ok(X1), ok(X2)) → PROD(X1, X2)
ACTIVE(prod(X1, X2)) → ACTIVE(X2)
PROPER(zero(X)) → PROPER(X)
FACT(mark(X)) → FACT(X)
ACTIVE(add(X1, X2)) → ADD(active(X1), X2)
P(ok(X)) → P(X)
ACTIVE(fact(X)) → FACT(p(X))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(prod(s(X), Y)) → ADD(Y, prod(X, Y))
ACTIVE(s(X)) → S(active(X))
PROPER(s(X)) → PROPER(X)
ACTIVE(add(X1, X2)) → ADD(X1, active(X2))
ACTIVE(add(s(X), Y)) → ADD(X, Y)
ACTIVE(fact(X)) → PROD(X, fact(p(X)))
PROPER(prod(X1, X2)) → PROPER(X1)
PROPER(prod(X1, X2)) → PROD(proper(X1), proper(X2))
PROPER(p(X)) → PROPER(X)
ADD(mark(X1), X2) → ADD(X1, X2)
ACTIVE(fact(X)) → FACT(active(X))
TOP(mark(X)) → PROPER(X)
ACTIVE(fact(X)) → P(X)
PROD(X1, mark(X2)) → PROD(X1, X2)
ACTIVE(add(X1, X2)) → ACTIVE(X1)
PROPER(if(X1, X2, X3)) → PROPER(X1)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
PROPER(add(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(add(X1, X2)) → ADD(proper(X1), proper(X2))
PROPER(fact(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(if(X1, X2, X3)) → PROPER(X3)
ACTIVE(prod(X1, X2)) → PROD(active(X1), X2)
PROPER(p(X)) → P(proper(X))
PROPER(fact(X)) → FACT(proper(X))
FACT(ok(X)) → FACT(X)
ACTIVE(s(X)) → ACTIVE(X)
S(ok(X)) → S(X)
PROPER(if(X1, X2, X3)) → PROPER(X2)
ACTIVE(prod(s(X), Y)) → PROD(X, Y)
ADD(ok(X1), ok(X2)) → ADD(X1, X2)
ACTIVE(fact(X)) → S(0)
ACTIVE(prod(X1, X2)) → ACTIVE(X1)
ACTIVE(zero(X)) → ACTIVE(X)
ACTIVE(fact(X)) → IF(zero(X), s(0), prod(X, fact(p(X))))
PROPER(add(X1, X2)) → PROPER(X2)
ACTIVE(p(X)) → P(active(X))
PROPER(zero(X)) → ZERO(proper(X))
ADD(X1, mark(X2)) → ADD(X1, X2)
ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
TOP(ok(X)) → TOP(active(X))
ACTIVE(prod(X1, X2)) → PROD(X1, active(X2))
ACTIVE(fact(X)) → ZERO(X)
ZERO(ok(X)) → ZERO(X)
ACTIVE(add(s(X), Y)) → S(add(X, Y))

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 10 SCCs with 28 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(X1, mark(X2)) → ADD(X1, X2)
ADD(mark(X1), X2) → ADD(X1, X2)
ADD(ok(X1), ok(X2)) → ADD(X1, X2)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ADD(ok(X1), ok(X2)) → ADD(X1, X2)
The remaining pairs can at least be oriented weakly.

ADD(X1, mark(X2)) → ADD(X1, X2)
ADD(mark(X1), X2) → ADD(X1, X2)
Used ordering: Combined order from the following AFS and order.
ADD(x1, x2)  =  x2
mark(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(X1, mark(X2)) → ADD(X1, X2)
ADD(mark(X1), X2) → ADD(X1, X2)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ADD(X1, mark(X2)) → ADD(X1, X2)
The remaining pairs can at least be oriented weakly.

ADD(mark(X1), X2) → ADD(X1, X2)
Used ordering: Combined order from the following AFS and order.
ADD(x1, x2)  =  x2
mark(x1)  =  mark(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(mark(X1), X2) → ADD(X1, X2)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ADD(mark(X1), X2) → ADD(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ADD(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

P(mark(X)) → P(X)
P(ok(X)) → P(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


P(ok(X)) → P(X)
The remaining pairs can at least be oriented weakly.

P(mark(X)) → P(X)
Used ordering: Combined order from the following AFS and order.
P(x1)  =  x1
mark(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

P(mark(X)) → P(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


P(mark(X)) → P(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
P(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROD(ok(X1), ok(X2)) → PROD(X1, X2)
PROD(X1, mark(X2)) → PROD(X1, X2)
PROD(mark(X1), X2) → PROD(X1, X2)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROD(X1, mark(X2)) → PROD(X1, X2)
The remaining pairs can at least be oriented weakly.

PROD(ok(X1), ok(X2)) → PROD(X1, X2)
PROD(mark(X1), X2) → PROD(X1, X2)
Used ordering: Combined order from the following AFS and order.
PROD(x1, x2)  =  x2
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROD(ok(X1), ok(X2)) → PROD(X1, X2)
PROD(mark(X1), X2) → PROD(X1, X2)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROD(ok(X1), ok(X2)) → PROD(X1, X2)
The remaining pairs can at least be oriented weakly.

PROD(mark(X1), X2) → PROD(X1, X2)
Used ordering: Combined order from the following AFS and order.
PROD(x1, x2)  =  x2
ok(x1)  =  ok(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROD(mark(X1), X2) → PROD(X1, X2)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROD(mark(X1), X2) → PROD(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PROD(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.

S(ok(X)) → S(X)
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ZERO(mark(X)) → ZERO(X)
ZERO(ok(X)) → ZERO(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ZERO(ok(X)) → ZERO(X)
The remaining pairs can at least be oriented weakly.

ZERO(mark(X)) → ZERO(X)
Used ordering: Combined order from the following AFS and order.
ZERO(x1)  =  x1
mark(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ZERO(mark(X)) → ZERO(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ZERO(mark(X)) → ZERO(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ZERO(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.

IF(mark(X1), X2, X3) → IF(X1, X2, X3)
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  x3
ok(x1)  =  ok(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(mark(X1), X2, X3) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


IF(mark(X1), X2, X3) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FACT(mark(X)) → FACT(X)
FACT(ok(X)) → FACT(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FACT(ok(X)) → FACT(X)
The remaining pairs can at least be oriented weakly.

FACT(mark(X)) → FACT(X)
Used ordering: Combined order from the following AFS and order.
FACT(x1)  =  x1
mark(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FACT(mark(X)) → FACT(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FACT(mark(X)) → FACT(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
FACT(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(add(X1, X2)) → PROPER(X1)
PROPER(zero(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(fact(X)) → PROPER(X)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(prod(X1, X2)) → PROPER(X2)
PROPER(prod(X1, X2)) → PROPER(X1)
PROPER(add(X1, X2)) → PROPER(X2)
PROPER(p(X)) → PROPER(X)
PROPER(if(X1, X2, X3)) → PROPER(X2)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(add(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(prod(X1, X2)) → PROPER(X2)
PROPER(prod(X1, X2)) → PROPER(X1)
PROPER(add(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.

PROPER(zero(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(fact(X)) → PROPER(X)
PROPER(p(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
add(x1, x2)  =  add(x1, x2)
zero(x1)  =  x1
s(x1)  =  x1
fact(x1)  =  x1
if(x1, x2, x3)  =  if(x1, x2, x3)
prod(x1, x2)  =  prod(x1, x2)
p(x1)  =  x1

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(zero(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(fact(X)) → PROPER(X)
PROPER(p(X)) → PROPER(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(p(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(zero(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(fact(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
zero(x1)  =  x1
s(x1)  =  x1
fact(x1)  =  x1
p(x1)  =  p(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(zero(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(fact(X)) → PROPER(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(fact(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(zero(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
zero(x1)  =  x1
s(x1)  =  x1
fact(x1)  =  fact(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(zero(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(zero(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
zero(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(zero(X)) → PROPER(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(zero(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
zero(x1)  =  zero(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(prod(X1, X2)) → ACTIVE(X2)
ACTIVE(prod(X1, X2)) → ACTIVE(X1)
ACTIVE(add(X1, X2)) → ACTIVE(X1)
ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(zero(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(add(X1, X2)) → ACTIVE(X2)
ACTIVE(p(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(prod(X1, X2)) → ACTIVE(X2)
ACTIVE(prod(X1, X2)) → ACTIVE(X1)
ACTIVE(add(X1, X2)) → ACTIVE(X1)
ACTIVE(add(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.

ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(zero(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(p(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
prod(x1, x2)  =  prod(x1, x2)
add(x1, x2)  =  add(x1, x2)
fact(x1)  =  x1
if(x1, x2, x3)  =  x1
zero(x1)  =  x1
s(x1)  =  x1
p(x1)  =  x1

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(zero(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(p(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(p(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(zero(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
if(x1, x2, x3)  =  x1
fact(x1)  =  x1
zero(x1)  =  x1
s(x1)  =  x1
p(x1)  =  p(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(zero(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(zero(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
fact(x1)  =  x1
if(x1, x2, x3)  =  x1
zero(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(zero(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(zero(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fact(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
if(x1, x2, x3)  =  x1
fact(x1)  =  x1
zero(x1)  =  zero(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fact(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.

ACTIVE(fact(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
fact(x1)  =  x1
if(x1, x2, x3)  =  if(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fact(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(fact(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
fact(x1)  =  fact(x1)

Lexicographic path order with status [19].
Precedence:
trivial

Status:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ QDPOrderProof
QDP
                                        ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
active(fact(X)) → fact(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(zero(X)) → zero(active(X))
active(s(X)) → s(active(X))
active(prod(X1, X2)) → prod(active(X1), X2)
active(prod(X1, X2)) → prod(X1, active(X2))
active(p(X)) → p(active(X))
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fact(mark(X)) → mark(fact(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
zero(mark(X)) → mark(zero(X))
s(mark(X)) → mark(s(X))
prod(mark(X1), X2) → mark(prod(X1, X2))
prod(X1, mark(X2)) → mark(prod(X1, X2))
p(mark(X)) → mark(p(X))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fact(X)) → fact(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(zero(X)) → zero(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(prod(X1, X2)) → prod(proper(X1), proper(X2))
proper(p(X)) → p(proper(X))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
proper(true) → ok(true)
proper(false) → ok(false)
fact(ok(X)) → ok(fact(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
zero(ok(X)) → ok(zero(X))
s(ok(X)) → ok(s(X))
prod(ok(X1), ok(X2)) → ok(prod(X1, X2))
p(ok(X)) → ok(p(X))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.